

LEARNING / ASSESSMENT SCENARIOS

Deliverable 7.6 – Products from students specialized in Mathematics Education

Demetra Pitta-Pantazi, Constantinos Christou, Maria Kattou, Marios Pittalis, Paraskevi Sophocleous

CONTENTS

LEARNING/ASSESSMENT SCENARIO 1: ANALYZING DATA	2
LEARNING/ASSESSMENT SCENARIO 2: COMPARING QUADRILATERALS	7
LEARNING/ASSESSMENT SCENARIO 3: COMPOSING AND DECOMPOSING SHAPES	15

Lifelong
LearningThis project has been funded with support from the European Commission. This publication
[communication] reflects the views only of the author, and the Commission cannot be held
responsible for any use which may be made of the information contained therein.

LEARNING/ASSESSMENT SCENARIO 1: ANALYZING DATA

Androulla Adamou, Marina Kenti & Rafaella Alexandrou

Introduction

3rd grade

Mathematical strands: Algebra and Numbers

Lesson duration: 40 minutes

LEARNING GOALS

Students will be able to:

N.2.3: Represent natural numbers until 10 000, using Dienes cubes, abacus, applets, words and symbols.

N.2.11: Represent problems of addition, subtraction, multiplication, perfect and imperfect division, using Dienes cubes, abacus, applets, words and symbols.

N.2.4: Design graphs to represent numerical relationships.

A.2.8: Investigate and represent numerical stories and situations, using variables, drawings, graphs and equations.

S.P.2.1: Organize and present data in frequency charts (bar chart, pie chart and linear graph).

.....

MATHEMATICAL PRACTICES

- Make sense of problems and persevere in solving them
- Use appropriate tools strategically
- Construct viable arguments and critique the reasoning of others
- Reason abstractly and quantitatively

✓ What conclusions can be drawn from the above graph?

✓ Compare the number of habitants who always recycle to these who never recycle. Write a mathematical sentence.

.....

✓ Compare the number of habitants who never recycle to these who don't know how to recycle. Write a mathematical sentence.

.....

✓ How many persons participated in this study? Write a mathematical sentence.

.....

Activity 2

Hercules interviewed some of his classmates. Can you help him organize the interviews' data? Use the following applet and design a bar graph that presents the results of his study.

http://illuminations.nctm.org/Activity.aspx?id=4098

New Dia Pie Pie Pietograph
Graph Title: ↔ X Axis Label: ‡ Y Axis Label:
Row 1
Min Value: Source:

- ✓ Select the "Bar" option.✓ Write the title of your graph.
- ✓ Assign the minimum and maximum value of your graph in the "Min. Value" and "Max. Value" cells.
- ✓ Enter all data and choose "Preview" option to view your graph.
- ✓ Compare your graph to your partner's graph.

L	ا ا
1.	How many of the participants answered "always"?
2.	How many of the participants answered "never"?
3.	How many of the participants answered "rare"?
4.	How many of the participants answered "sometimes"?
5.	How many of the participants answered "I can't remember"?
6.	How many were all the participants of the study?

The next day, Hercules interviewed 10 more people. Five of them answered "always" and the rest of them "never".

✓ How will the graph looks like now? Explain your thoughts by writing a mathematical sentence.

.....

- ✓ Compare the two graphs, by stating their similarities and differences.
- ✓ Enter the new data and design the new graph.
- ✓ Confirm your answers, through your new graph.

Well done! You are very good at designing graphs!

✓ In the following site, you can find the data collected by Hercules. It is your duty to organize them appropriately.

http://www.kidsmathgamesonline.com/numbers/mathdata.html

Activity 3

Can you think which slice of the pie chart below corresponds to each bar of the bar graph? **Do not take into consideration the colors of the graphs!!** Discuss your ideas with your classmates

What is your favourite hobby?		8-					
Hobby	Total		hildre				
Football	4		54				
Dancing	1		-2 per				
Reading	5		Nur.				
Painting	2		- 0-	Α	Α	A	A
		_		Football	Dancing	Reading	Painting

LEARNING/ASSESSMENT SCENARIO 2: COMPARING QUADRILATERALS

Androulla Adamou, Marina Kenti & Rafaella Alexandrou

Introduction

6th grade

Mathematical strand: Geometry

Lesson duration: 40 minutes

LEARNING GOALS

G.1.3: Investigate and understand basic properties of two-dimensional figures (triangle, square, parallelogram, rectangle and circle).

G.2.4: Investigate and describe basic elements and properties of two-dimensional figures (triangle, square, parallelogram, rectangle and circle).

G.3.2: Analyze, classify and construct two-dimensional figures, based on their properties, using various tools and software programs.

G.2.5: Recognize different types of parallelograms and explain their similarities and differences.

1.....

MATHEMATICAL PRACTICES

- Make sense of problems and persevere in solving them
- Construct viable arguments and critique the reasoning of others
- Attend to precision
- Look for and express regularity in repeated reasoning

✓ Do you agree with Lydia or her father? Explain your thoughts.

Complete the table below with the properties related to quadrilaterals' sides, using Geogebra.

SHAPES	PROPERTIES RELATED TO SIDES			
	Common properties with other shapes	Additional properties (if there are any)		
Parallelogram	Example: The opposite sides are equal and parallel.	(in there are any)		
Rectangle				
Rhombus				
Square				

✓ What conclusions can be drawn from the above table? Write them down.

I
I

✓ Compare your conclusions to your partner's conclusions.

Complete the table below with the properties related to quadrilaterals' angles, using Geogebra.

SHAPES	PROPERTIES RELATED TO ANGLES				
	Common properties with other shapes	Additional properties (if there are any)			
Parallelogram					
Rectangle					
Rhombus					
Square					

✓ Compare your conclusions to your partner's conclusions.

Predict quadrilaterals' properties related to their diagonals. Explain your thoughts.

✓ Explore the figures given in the Geogebra file and complete the table below.

Activity 5

SHAPES	PROPERTIES RELATED TO DIAGONALS			
	Common properties with other shapes	Additional properties (if there are any)		
Parallelogram	•			
Rectangle				
Rhombus				
Square				

✓ What conclusions can be drawn from the table above? Are there any similarities between the last two tables you have completed?

✓ Compare your conclusions to your partner's conclusions.

✓ Complete the following table using information from the above tables.

SHAPES	ALL PROPERTIES			
	Common properties with other shapes	Additional properties (if there are any)		
Parallelogram				
Rectangle				
Rhombus				
Square				

✓ Based on the table above, complete the following diagram, by describing the properties of the "initial" shape and the additional property that characterizes the "final" shape.

- Rectangle is a special case of
- Square is a special case of and
- Rhombus is a special case of parallelogram, because
 - -----

• Parallelogram is a special case of quadrilaterals, because

Well done! Discuss your ideas with your classmates.

LEARNING/ASSESSMENT SCENARIO 3: COMPOSING AND DECOMPOSING SHAPES

Androulla Adamou, Marina Kenti & Rafaella Alexandrou

Introduction

6th grade

Mathematical strand: Geometry

Lesson Duration: 40 minutes

LEARNING GOALS

G.2.4: Investigate, describe and name basic elements and properties of two-dimensional figures and circle.

G.3.2: Analyze, classify and design two-dimensional figures based on their properties, using various tools and software programs.

1......

MATHEMATICAL PRACTICES

- Make sense of problems and persevere in solving them
- Construct viable arguments and critique the reasoning of others
- Attend to precision

After working for hours, Goofy managed to design the cover page of a textbook. What do you believe the textbook is about?

Theme of the textbook:			
What figures are there on the cover page?			

The textbook's cover page

- Click the link: <u>http://illuminations.nctm.org/Activity.aspx?id=3577</u>
- Use the pattern figures shown on the top of the screen and compose as many new figures as possible.
- Pattern figures can be rotated, by clicking the buttons
- Press your keyboard's *Print Screen* key, to capture the new figures.
- In case you make a mistake, click the button 🔣

<u>Caution</u>: It is important to precisely use the existing figures, in order to be able to compose new ones.

Call your teacher when you are ready!

Activity 3

In how many different ways can you compose a trapezium (red figure), using the existing figures of the applet?

Let's investigate twodimensional figures!

How many triangles are needed to create a hexagon (yellow figure)? Make a prediction and write it down. The applet may be helpful to you!

✓ How many triangles of different sizes can you compose? One point is earned for each triangle!

Write down the number of points you earned.

✓ Click

✓ Which figures are needed to create the selected pattern?

- ✓ Confirm your answer using the applet.
- ✓ Can you find a different way to create the selected pattern?

Into how many different figures can a square be decomposed? Niki decomposed the square into 7 smaller figures, but I would like to investigate if she has right!

✓ Write down your ideas and then use the applet to confirm your answer.

- ✓ Click the site <u>http://www.crickweb.co.uk/ks1numeracy.html#tangram</u>
- ✓ Press the button «Other shape», until a square appears on the right side of the screen, as shown in the picture below.
- ✓ Try to combine all figures on the bottom of the screen, to create a square.
- ✓ You can rotate the figures, by clicking the circle of every figure.
- ✓ Caution: It is important to be precise in the way you use the figures.
- ✓ If you make a mistake, press ____
- ✓ If you want to confirm your answer press **Solution**.

Call your teacher when you are ready!

Was Niki's answer correct? Explain your opinion.

✓ Discuss the results with your partner!

Activity 6

✓ Open the file below to practice more. Follow the provided guides!

 ✓ Is there any figure that was not used? If yes, which figure is it and why? Justify your reasoning.

Activity 7

- ✓ Click <u>http://photodentro.edu.gr/lor/r/8521/4437?locale=el</u>
- ✓ Select the button " $O\delta\eta\gamma$ ίες". Decide on the figure you desire to design, by clicking the button "**Επόμενο**" and "**Προηγούμενο**".
- ✓ Use the given figures to compose a new figure.
- If you need help, press the button "Βοήθεια".

Well done! Discuss your ideas with your classmates.